Journal of Organometallic Chemistry, 148 (1978) 311–315 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

RHODIUM-PHOSPHINE COMPLEXES AS HOMOGENEOUS CATALYSTS

IV *. HOMOGENEOUS CATALYTIC HYDRODEHALOGENATION OF ORGANIC HALIDES BY MOLECULAR HYDROGEN

PÁL KVINTOVICS, BÁLINT HEIL, JÓZSEF PALÁGYI and LÁSZLÓ MARKÓ Department of Organic Chemistry, University of Chemical Engineering, 8200 Veszprém (Hungary)

(Received September 27th, 1977)

Summary

Rhodium-phosphine complexes formed in situ from bis(1,5-hexadienechloro-rhodium), tertiary phosphines, and amines, catalyse the hydrodehalogenation of alkyl and aryl halides. Catalysts containing PPh₃ and with a P/Rh ratio of 1.1/1 are the most active; water increases the rate of the reaction.

Introduction

The heterogeneous catalytic hydrodehalogenation of organic halides by molecular hydrogen is a well known and industrially used reaction [2], but to our knowledge there has been only one report on homogeneous catalysis of this reaction [3]. However, there have been reports of homogeneous hydrodehalogenation using organic compounds such as alcohols [4] or amines [5] as hydrogen donors. We report below results on hydrodehalogenation with dihydrogen using rhodium-phosphine complexes obtained "in situ" from $[Rh(Hex)Cl]_2$ (Hex = 1,5-hexadiene) and PPh₃ as catalysts.

Results and discussion

The dark homogeneous solution obtained from $[Rh(Hex)Cl]_2$, triphenylphosphine, triethylamine and benzyl chloride (1/4.4/200/200) in benzene/methanol (1/1) was found to absorb dihydrogen at 50°C, and toluene was detected by GLC as the sole reaction product:

 $PhCH_2Cl + H_2 \frac{[Rh]}{Et_3N} PhCH_3 + Et_3N \cdot HCl$

* For part III see ref. 1.

Experiments under a variety of conditions revealed that the rate could be significantly increased by lowering the phosphine/rhodium ratio to 1.1/1, and by using a two phase *p*-xylene/water solvent system. Use of the somewhat stronger base diethylamine instead of triethylamine as HCl acceptor increased the rate, whereas tributylphosphine or $Ph_2PCH_2CH_2PPh_2$ gave less active catalysts than triphenylphosphine. The results of these experiments are shown in Table 1.

312

The catalytic system found to be most effective, viz. 1 Rh + 1.1 PPh₃/Et₂NH/ *p*-xylene + H₂O, was succesfully used for the hydrodehalogenation of several organic halogen compounds such as alkyl and aryl halides, α -chlorocarboxylic esters and various benzyl and benzylidene halides. Alkyl halides were found to be the least reactive, and compounds with activated halogens, such as benzyl halides and α -chlorocarboxylic esters, the most reactive. Within the simple alkyl and aryl halides the reactivity order was I > Br > Cl, but benzyl iodide was, surprisingly, unreactive. Generally no significant difference was found between the aliphatic and aromatic compounds. Table 2 lists some representative data.

In most cases 100% conversion based on hydrogen consumption was easily achieved, which means a turnover number of 100 for the catalytically-active rhodium complex. The catalyst was generally still active at this point, and addition of new substrate restarted the H_2 absorption. By repeatedly adding additional benzyl chloride, a turnover number of 400 was reached in one experiment without deactivation of the catalyst, although the rate gradually diminished.

The yield of hydrogenated product determined by GLC amounted to 60–90%. No dimeric products or other by-products were detected. With substrates containing 2 or 3 halogen atoms the partially dehalogenated intermediates were found in samples taken during the reaction. For example after the consumption of 0.5 mol H₂ for 1 mol of CCl₄, the reaction product contained 1.1% CH₃Cl, 5.8% CH₂Cl₂, 22.3% CHCl₃ and 70.4% CCl₄, and a small amount of methane could be detected in the gas above the reaction mixture.

The remarkable low P/Rh ratio (the usual "Wilkinson-type" rhodium-phosphine catalysts require at least 2 phosphorus donor atoms per rhodium [6]) and the very dark brown colour of the clear homogeneous solutions suggest that our catalysts is rather different from the generally used rhodium(I)-phosphine complexes derived from Rh(PPh₃)₃Cl. Lowering the P/Rh ratio below 1/1 results in the visible precipitation of rhodium. The hydrogenolysis is also catalysed by this rhodium precipitate, as shown by a relatively rapid H₂ consumption, but this heterogeneous catalytic reaction is practically completely inhibited by adding 1.1 mol of PPh₃ per rhodium to the reaction mixture after formation of the precipitate. This dramatic difference between the effect of PPh₃ added before or after the start of hydrogenation clearly shows the existence of two different types of catalysts: the homogeneous species, which needs the presence of 1 PPh₃ per rhodium, and the heterogeneous species, which is inhibited by PPh₃.

Experiments to clarify the structure of the homogeneous catalytic system and its application to other reactions are in progress.

Solvent	Base	Phosphine	P/Rh	t _{0,5} (min) ⁰	1TO °	Conversion (%) ^a
Benzene	Et ₃ N	PPha	2,2/1	.	0.05	
Benzene/McOH (1/1)	EtaN	PPh3	2,2/1	260	0.7	73
Benzene/MeOH (1/1)	EtaN	PPha	1/1.1	60	2.5	76
Benzene/H2O (1/1)	EtaN	PPha	1/1/1	50	2.8	78
<i>p</i> ·Xylene/H ₂ O (1/1)	Et ₃ N	5 hgg	1,1,1	20	3.8	81
p-Xylene/H ₂ O (1/1)	Et ₂ NH	PPh ₃	1.1/1	16	5.1	88
p-Xylene/H ₂ O (1/1)	Et ₂ NH	PPh ₃	2,2/1	230	0.4	10
p-Xylene/H ₂ O (1/1)	NaOH	PPha	1,1,1	26	4.5	86
p-Xylene/H ₂ O (1/1)	Et ₂ NH	PBu3	1,1/1	50	1.3	71
p-Xylene/H ₂ O (1/1)	Et ₂ NH	Ph2PCH2CH2CH2PPI	h ₂ 1.1/1	20	3.8	83
<i>p</i> -Xylene/H ₂ O (1/1)	Et ₂ NH	, , ,	1	ł	4,0 °	1
p-Xylene/H ₂ O (1/1)	Et2NH	PPh ₃	1/1/1	1	0.3 f	ł

HYDRODEHALOGENATION OF BENZYL CHLORIDE⁴. EFFECT OF REACTION CONDITIONS

TABLE 1

(50% conversion or turnover number 50).⁶ ITO = initial turnover (mol $H_2/mol Rh min^{-1}$).^d As determined by GLC. All experiments were run until H_2 absorption reached 5.0 mmol.^e Rhodium metal precipitated from the solution.^f After adding PPh_3 to e).

	(0,s(min) ⁰	° OTI	Conversion d (%)	Hallde	to.s(min) ^D	110 °	Conversion d (%)
Bonzyl chloride	15	6,1	88 6	1-Chloropentane		no varetion	
Benzyl bromide	16	4.5	63 ⁶¹	1-Bromopentane	200	0.6	A7 6
Bonzyl lodide	110	2,8	20 a	3-Bromopentane	140	0.7	88
Benzylldene			-				
lichloride	140	6,3	Ĩ	1-lodopentane	20	8	8
Bonzylldene	-	-			2		
llbromide	170	4,8	ł	Cvelohexvlehloride	RND	8 C	
hlorobenzene	400	0.1	32 /	Cvelohovylindida	66		0
Iromobenzene	210	0.6	986	CICHACODE		*i0	2
odobenzene	65	2.3	B2 ^c	CI-COODE	11	0'0	5 . 50
		i I			204	9 ,0	

÷

.

1 t (1 ţ t t ſ ۱ l t

1 1

ţ

; 3

1

i

Q. TABLE 2

314

Experimental

General procedure

11.0 mg (0.025 mmol) $[Rh(Hex)Cl]_2$ and 14.4 mg (0.055 mmol) PPh₃ were dissolved at 50°C in 6 ml of *p*-xylene under H₂ in a thermostatted flask connected to a thermostatted gas burette equipped with a magnetic stirrer and a silicone rubber cap. When solution was complete, 6 ml water and 0.52 ml (5.0 mmol) Et₂NH were added and the catalyst was prehydrogenated for 30 min. The substrate (5.0 mmol) was then added with a syringe, and the reaction was monitored by measuring the hydrogen consumption. The product was analyzed by GLC.

References

- 1 S. Vastag, B. Heil, S. Tórös and L. Markó, Transition Met. Chem., 2 (1977) 58.
- 2 M. Freifelder, Practical Catalytic Hydrogenation, Wiley, New York, 1971, p. 446-497.
- 3 C.J. Love and F.J. McQuillin, J. Chem. Soc. Dalton, (1973) 2509.
- 4 Y. Sasson and G.L. Rempel, Synthesis, (1975) 448; Tetrahedron Lett., (1974) 3221.
- 5 H. Imai, T. Nishiguchi, M. Tanaka and K. Fukuzumi, Chem. Lett., (1976) 855.
- 6 B.R. James, Homogeneous Hydrogenation, Wiley, New York, 1973, p. 204-249.